.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "gallery/ms_matplotlib/plot_investigate_spectrum_binning_ms_matplotlib.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. or to run this example in your browser via Binder .. rst-class:: sphx-glr-example-title .. _sphx_glr_gallery_ms_matplotlib_plot_investigate_spectrum_binning_ms_matplotlib.py: Investigate Spctrum Binning ms_matplotlib ======================================= Here we use a dummy spectrum example to investigate spectrum binning. .. GENERATED FROM PYTHON SOURCE LINES 7-90 .. image-sg:: /gallery/ms_matplotlib/images/sphx_glr_plot_investigate_spectrum_binning_ms_matplotlib_001.png :alt: Spectrum (Raw), Spectrum (agg: sum | bin: freedman), Spectrum (agg: mean | bin: freedman), Spectrum (agg: sum | bin: mz-tol-bin=1), Spectrum (agg: mean | bin: mz-tol-bin=1), Spectrum (agg: max | bin: mz-tol-bin=1), Spectrum (agg: max | bin: mz-tol-bin=1pct-diff), Spectrum (agg: max | bin: mz-tol-bin=freedman-diaconis) :srcset: /gallery/ms_matplotlib/images/sphx_glr_plot_investigate_spectrum_binning_ms_matplotlib_001.png :class: sphx-glr-single-img .. code-block:: Python import pandas as pd import matplotlib.pyplot as plt import requests from io import StringIO pd.options.plotting.backend = "ms_matplotlib" # download the file for example plotting url = ( "https://github.com/OpenMS/pyopenms_viz/releases/download/v0.1.5/TestSpectrumDf.tsv" ) response = requests.get(url) response.raise_for_status() # Check for any HTTP errors df = pd.read_csv(StringIO(response.text), sep="\t") # Let's assess the peak binning and create a 4 by 2 subplot to visualize the different methods of binning params_list = [ {"title": "Spectrum (Raw)", "bin_peaks": False}, { "title": "Spectrum (agg: sum | bin: freedman)", "bin_peaks": "auto", "bin_method": "freedman-diaconis", "aggregation_method": "sum", }, { "title": "Spectrum (agg: mean | bin: freedman)", "bin_peaks": "auto", "bin_method": "freedman-diaconis", "aggregation_method": "mean", }, { "title": "Spectrum (agg: sum | bin: mz-tol-bin=1)", "bin_peaks": "auto", "bin_method": "mz-tol-bin", "mz_tol": 1, "aggregation_method": "sum", }, { "title": "Spectrum (agg: mean | bin: mz-tol-bin=1)", "bin_peaks": "auto", "bin_method": "mz-tol-bin", "mz_tol": 1, "aggregation_method": "mean", }, { "title": "Spectrum (agg: max | bin: mz-tol-bin=1)", "bin_peaks": "auto", "bin_method": "mz-tol-bin", "mz_tol": 1, "aggregation_method": "max", }, { "title": "Spectrum (agg: max | bin: mz-tol-bin=1pct-diff)", "bin_peaks": "auto", "bin_method": "mz-tol-bin", "mz_tol": "1pct-diff", "aggregation_method": "max", }, { "title": "Spectrum (agg: max | bin: mz-tol-bin=freedman-diaconis)", "bin_peaks": "auto", "bin_method": "mz-tol-bin", "mz_tol": "freedman-diaconis", "aggregation_method": "max", }, ] # Create a 3-row subplot fig, axs = plt.subplots(4, 2, figsize=(14, 14)) i = j = 0 for params in params_list: p = df.plot( kind="spectrum", x="mz", y="intensity", canvas=axs[i][j], grid=False, show_plot=False, **params ) j += 1 if j >= 2: # If we've filled two columns, move to the next row j = 0 i += 1 fig.tight_layout() plt.show() .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.817 seconds) .. _sphx_glr_download_gallery_ms_matplotlib_plot_investigate_spectrum_binning_ms_matplotlib.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: binder-badge .. image:: images/binder_badge_logo.svg :target: https://notebooks.gesis.org/binder/v2/gh/OpenMS/pyopenms_viz/gh_pages?filepath=notebooks/gallery/ms_matplotlib/plot_investigate_spectrum_binning_ms_matplotlib.ipynb :alt: Launch binder :width: 150 px .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_investigate_spectrum_binning_ms_matplotlib.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_investigate_spectrum_binning_ms_matplotlib.py ` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: plot_investigate_spectrum_binning_ms_matplotlib.zip ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_